Lesson 35. Triple Integrals

1 Overview

• Integrals of 3-variable functions over 3D regions of integration

2 Triple integrals over rectangular boxes

• **Fubini's theorem for triple integrals.** Let $B = \{(x, y, z) \mid a \le x \le b, c \le y \le d, r \le z \le s\}$. Then

- \circ (f continuous on B)
- o Integrate from the inside out
- When all limits of integration are constant, we can integrate in any order

Example 1. Evaluate the triple integral $\iiint_B x \, dV$, where *B* is the rectangular box given by $B = \{(x, y, z) \mid 0 \le x \le 1, -1 \le y \le 2, 0 \le z \le 3\}$.

3 Triple integrals over general bounded 3D regions

• Type A 3D region: between two continuous functions of x and y

- \circ *E* is the 3D region
- $\circ D$ is the projection (shadow) of E onto the xy-plane
- \circ If *E* is a type A region, then

- \circ (f, u_1 , u_2 continuous)
- Integration from the inside out
- Double integral over *D* can be done using previous techniques (e.g. Type I or II region)

Example 2. Express $\iiint_E x \, dV$ as an iterated integral, where *E* lies below the plane z = 1 + x + y and above the region in the *xy*-plane bounded by the curves $y = x^2$ and y = x.

	m r	- 1**		1 7.1			1.
xample 4. E	$xpress \iiint_E y \sqrt{z}$ $e plane 2x + y + 1$	$\frac{1}{z} dV$ as an itera $-z = 4$.	ated integral, w	where E is the so	lid tetrahedron	enclosed by the	coordina
xample 4. Eanes and the	$ \text{xpress } \iiint_E y \sqrt{z} \\ \text{e plane } 2x + y + 4 $	$\frac{1}{z}dV$ as an iterate $z = 4$.	ated integral, w	where E is the so	lid tetrahedron	enclosed by the	coordina
xample 4. E anes and the	$ \text{xpress } \iiint_E y \sqrt{z} \\ \text{e plane } 2x + y + y = 0 $	$\overline{z} dV$ as an itera- $z = 4$.	ated integral, w	where E is the so	lid tetrahedron	enclosed by the	coordina
xample 4. E anes and the	$ \text{xpress } \iiint_E y \sqrt{z} \\ \text{e plane } 2x + y + y + y = 0 $	$ \overline{z} dV $ as an iteration $ \overline{z} = 2 = 4 $.	ated integral, w	where E is the so	lid tetrahedron	enclosed by the	coordina
xample 4. E	$ \text{xpress } \iiint_E y \sqrt{z} \\ \text{e plane } 2x + y + y + y = 0 $	$ \overline{z} dV $ as an iteration $ \overline{z} = 2 = 4 $.	ated integral, w	where E is the so	lid tetrahedron	enclosed by the	coordina
xample 4. E anes and the	$ \text{xpress} \iiint_E y \sqrt{z} \\ \text{e plane } 2x + y + y + y + y + y + y + y + y + y + $	$\overline{z} dV$ as an iteration $z = 4$.	ated integral, w	where E is the so	olid tetrahedron	enclosed by the	coordin
xample 4. E anes and the	xpress $\iiint_E y \sqrt{z}$ e plane $2x + y + y$	z dV as an iterate $z = 4$.	ated integral, w	where E is the so	olid tetrahedron	enclosed by the	coordin
xample 4. E anes and the	xpress $\iiint_E y \sqrt{z}$ e plane $2x + y + 1$	z dV as an iteration $z = 4$.	ated integral, w	where E is the so	olid tetrahedron	enclosed by the	coordin
xample 4. E lanes and the	xpress $\iint_E y \sqrt{z}$ e plane $2x + y + 1$	z dV as an iteration $z = 4$.	ated integral, w	where E is the so	olid tetrahedron	enclosed by the	coordina
xample 4. E lanes and the	xpress $\iint_E y \sqrt{z}$ e plane $2x + y + 1$	$\overline{z} dV$ as an iteration $z = 4$.	ated integral, w	where E is the so	olid tetrahedron	enclosed by the	coordin
xample 4. E anes and the	xpress $\iint_E y \sqrt{z}$ e plane $2x + y + 1$	$\overline{z} dV$ as an itera- $z = 4$.	ated integral, w	where E is the so	olid tetrahedron	enclosed by the	coordin
xample 4. E anes and the	xpress $\iint_E y \sqrt{z}$ e plane $2x + y + 1$	z dV as an iteration $z = 4$.	ated integral, w	where E is the so	olid tetrahedron	enclosed by the	coordin

• Type B 3D region: between two continuous functions of y and z

Example 5. Express $\iiint_E y\sqrt{z}\,dV$ as an iterated integral, where E is the tetrahedron enclosed by the coordinate planes and the plane 2x + y + z = 4. Consider E as a type B region.

	plane $2x + y + z$					
xample 7. Ex $= x^2 + z^2$ and	Express $\iiint_E \sqrt{x^2}$ the plane $y = 4$	$\frac{1}{1+z^2}dV$ as an ite	erated integral, w	here E is the reg	ion bounded by	the paraboloid
Example 7. Ex $= x^2 + z^2$ and	express $\iiint_E \sqrt{x^2}$ the plane $y = 4$	$\frac{1}{1+z^2} dV$ as an ite	erated integral, w	here <i>E</i> is the reg	ion bounded by t	the paraboloid
Example 7. Ex $= x^2 + z^2$ and	Express $\iiint_E \sqrt{x^2}$ the plane $y = 4$	$\frac{1}{1+z^2} dV$ as an ite	erated integral, w	here E is the reg	ion bounded by t	the paraboloid
Example 7. Ex $= x^2 + z^2$ and	express $\iiint_E \sqrt{x^2}$ the plane $y = 4$	$\frac{1}{4} + z^2 dV$ as an ite	erated integral, w	here E is the reg	ion bounded by t	the paraboloid
Example 7. Ex $= x^2 + z^2$ and	Express $\iiint_E \sqrt{x^2}$ the plane $y = 4$	$\frac{1}{x^2} dV$ as an ite	erated integral, w	here <i>E</i> is the reg	ion bounded by	the paraboloid
Example 7. Ex $= x^2 + z^2$ and	Express $\iiint_E \sqrt{x^2}$ the plane $y = 4$	$\frac{1}{2} + z^2 dV$ as an ite	erated integral, w	here E is the reg	ion bounded by t	the paraboloid
xample 7. Ex $=x^2+z^2$ and	Express $\iiint_E \sqrt{x^2}$ the plane $y = 4$	$\frac{1}{4} + z^2 dV$ as an ite	erated integral, w	here E is the reg	ion bounded by	the paraboloid
EXAMPLE 7. Ex $=x^2+z^2$ and	express $\iiint_E \sqrt{x^2}$ the plane $y = 4$	$+z^2 dV$ as an ite	erated integral, w	here E is the reg	ion bounded by	the paraboloid
Example 7. Ex $y = x^2 + z^2$ and	express $\iiint_E \sqrt{x^2}$ the plane $y = 4$	$\frac{1}{4} + z^2 dV$ as an ite	erated integral, w	here E is the reg	ion bounded by	the paraboloic
Example 7. Ex $y = x^2 + z^2$ and	Express $\iiint_E \sqrt{x^2}$ the plane $y = 4$	$+z^2 dV$ as an ite	erated integral, w	here E is the reg	ion bounded by	the paraboloic

Example 8. The figure below shows the region of integration for the integral

$$\int_{-2}^{2} \int_{x^{2}}^{4} \int_{0}^{2-y/2} f(x, y, z) \, dz \, dy \, dx$$

a. Draw the projection of the region of integration onto the xy-plane, the yz-plane, and the xz-plane.

b. Rewrite the integral above as an equivalent iterated integral in the five other orders.