Lesson 35. Triple Integrals

1 Overview

- Integrals of 3-variable functions over 3D regions of integration

2 Triple integrals over rectangular boxes

- Fubini's theorem for triple integrals. Let $B=\{(x, y, z) \mid a \leq x \leq b, c \leq y \leq d, r \leq z \leq s\}$. Then
- $(f$ continuous on $B)$
- Integrate from the inside out
- When all limits of integration are constant, we can integrate in any order

Example 1. Evaluate the triple integral $\iiint_{B} x d V$, where B is the rectangular box given by $B=\{(x, y, z) \mid 0 \leq x \leq$ $1,-1 \leq y \leq 2,0 \leq z \leq 3\}$.

3 Triple integrals over general bounded 3D regions

- Type A 3D region: between two continuous functions of x and y

- E is the 3 D region
- D is the projection (shadow) of E onto the $x y$-plane
- If E is a type A region, then
- (f, u_{1}, u_{2} continuous)
- Integration from the inside out
- Double integral over D can be done using previous techniques (e.g. Type I or II region)

Example 2. Express $\iiint_{E} x d V$ as an iterated integral, where E lies below the plane $z=1+x+y$ and above the region in the $x y$-plane bounded by the curves $y=x^{2}$ and $y=x$.

Example 3. Express $\iiint_{E} \sin (x+y z) d V$ as an iterated integral, where E lies below the surface $z=1+x^{2}+4 y^{2}$ and above the region in the $x y$-plane bounded by the curves $x=2 y, x=0$, and $y=1$.

Example 4. Express $\iiint_{E} y \sqrt{z} d V$ as an iterated integral, where E is the solid tetrahedron enclosed by the coordinate planes and the plane $2 x+y+z=4$.

- Type B 3D region: between two continuous functions of y and z

- Type C 3D region: between two continuous functions of x and z

Example 5. Express $\iiint_{E} y \sqrt{z} d V$ as an iterated integral, where E is the tetrahedron enclosed by the coordinate planes and the plane $2 x+y+z=4$. Consider E as a type B region.

Example 6. Express $\iiint_{E} y \sqrt{z} d V$ as an iterated integral, where E is the tetrahedron enclosed by the coordinate planes and the plane $2 x+y+z=4$. Consider E as a type C region.

Example 7. Express $\iiint_{E} \sqrt{x^{2}+z^{2}} d V$ as an iterated integral, where E is the region bounded by the paraboloid $y=x^{2}+z^{2}$ and the plane $y=4$.

Example 8. The figure below shows the region of integration for the integral

$$
\int_{-2}^{2} \int_{x^{2}}^{4} \int_{0}^{2-y / 2} f(x, y, z) d z d y d x
$$

a. Draw the projection of the region of integration onto the $x y$-plane, the $y z$-plane, and the $x z$-plane.

b. Rewrite the integral above as an equivalent iterated integral in the five other orders.

